Tampilkan postingan dengan label Tugas Elektronika Digital. Tampilkan semua postingan
Tampilkan postingan dengan label Tugas Elektronika Digital. Tampilkan semua postingan

Minggu, 14 Oktober 2012

Rangkaian Comparator

COMPARATOR
Comparator merupakan salah satu dari sekian banyak jenis  datapath.  Dalam dunia elektro, comparator berfungsi sebagai pembanding data. Ada dua jenis comparator digital, yaitu Equality (Identify) Comparator dan Magnitude Comparator. Berikutnya akan dibahas kedua komparator tersebut.
equality/identify comparator
Comparator yang fungsinya mendeteksi apakah dua buah data biner n-bit besarnya sama atau tidak. Implementasinya dengan XNOR pada setiap bit (sebut saja bit ke-p) untuk masing-masing  data biner n-bit tersebut. Hal ini dimungkinkan karena gerbang XNOR akan berlogic ‘1’ jika kedua inputnya sama.
Magnitude Comparator
Comparator yang fungsinya tidak hanya mendeteksi apakah dua buah data biner n-bit besarnya sama maupun tidak sama. jika tidak sama comparator ini dapat pula mendeteksi data manakah yang lebih besar dan manakah yang lebih kecil (gt atau lt). Comparator ini disusun secara ripple dari tiap bit komparator penyusunnya.

Sabtu, 13 Oktober 2012

Rangkaian Full Adder

FULL ADDER
Sebuah Full Adder menjumlahkan dua bilangan yang telah dikonversikan menjadi bilangan-bilangan biner. Masing-masing bit pada posisi yang sama saling dijumlahkan. Full Adder sebagai penjumlah pada bit-bit selain yang terendah. 
Full Adder menjumlahkan dua bit input ditambah dengan nilai Carry-Out dari penjumlahan bit sebelumnya. Output dari Full Adder adalah hasil penjumlahan (Sum) dan bit kelebihannya (c Perangkat berikut  (gambar 1)  dikenal sebagai Full Adder  dan mampu menambah tiga bit informasi tunggal dan mengembalikan jumlah sedikit dan sedikit carry-out.

Jumat, 12 Oktober 2012

Rangkaian Register

RANGKAIAN REGISTER
Register adalah rangkaian logika yang digunakan untuk menyimpan data. Dengan kata lain, register adalah rangkaian yang tersusun dari satu atau beberapa flipflop yang digabungkan menjadi satu.
Flipflop disebut juga sebagai register 1 bit. Jadi untuk menyimpan 4 bit data, register harus terdiri dari 4 buah flipflop.  Untuk menyimpan data pada register, dapat dilakukan dengan dua cara :
1. Disimpan secara sejajar (Parallel In) :
Pada cara ini semua bagian register atau masingmasing flipflop diisi (dipicu) pada saat yang bersamaan.
2. Disimpan secara seri (Serial In) :
Pada cara ini, data dimasukkan bit demi bit mulai dari flipflop yang paling ujung (dapat dari kiri atau dari kanan), dan digeser sampai semuanya terisi. Bila data digeser dari kanan kekiri disebut “Register geser kiri” (Shift Left Register), sebaliknya bila data digeser dari kiri kekanan disebut “Register geser kanan” (Shift Right Register).

Seperti pada penyimpanan data, untuk mengeluarkan data juga dapat dilakukan dengan dua cara :
1.Dikeluarkan secara sejajar (Parallel Out)
2.Dikeluarkan secara seri (Serial Out)

Ada 3 Macam jenis shift register counter :
a. Ring Counter
b. Twisted Ring Counter (Switch-tail Ring  Counter /Johnson/Moebuis Counter )
c. Maximum Length Shift Counter
Penentuan kode biner untuk Ring Counter  dan Twisted Ring Counter adalah tetap.




Kamis, 11 Oktober 2012

Rangkaian Half Adder

HALF ADDER
Merupakan rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan dari dua buah bilangan binary, yang masing-masing terdiri dari satu bit. Rangkaian ini memiliki dua input dan dua buah output, salah satu outputnya dipakai sebagai tempat nilai pindahan dan yang lain sebagai hasil dari penjumlahan.

Rangkaian ini bisa dibangun dengan menggunakan IC 7400 dan IC 7408. Seperti yang terlihat pada gambar dibawah ini, rangkaian half adder merupakan gabungan beberapa gerbang NAND dan satu gerbang AND. Karakter utama sebuah gerbang NAND adalah bahwa ia membalikkan hasil dari sebuah gerbang AND yang karakternya hanya akan menghasilkan nilai satu ketika kedua inputnya bernilai satu, jadi gerbang NAND hanya akan menghasilkan nilai nol ketika semua inputnya bernilai satu.

Ketika salah satu atau lebih input bernilai nol maka keluaran pada gerbang NAND pertama akan bernilai satu. Karenanya kemudian input di gerbang kedua dan ketiga akan bernilai satu dan mendapat input lain yang salah satunya bernilai nol sehingga PASTI gerbang NAND yang masukannya nol tadi menghasilkan nilai satu. Sedangkan gerbang lain akan benilai nol karena mendapat input satu dan satu maka keluaran di gerbang NAND terakhir akan bernilai satu, karena salah satu inputnya bernilai nol.

Untuk menghitung carry digunakan sebuah gerbang AND yang karakter utamanya adalah bahwa iahanya akan menghasilkan nilai satu ketika kedua masukannya bernilai satu. Jadi carry satu hanya akan dihasilkan dari penjumlahan dua digit bilangan biner sama-sama bernilai satu, yang dalam penjumlahan utamanya akan menghasilkan nilai nol.

Half Adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk operasi penjumlahan data bilangan biner sampai 1bit saja. Rangkaian Half Adder memiliki 2 terminal input untuk 2 variabel bilangan biner clan 2 terminal output, yaitu SUMMARY OUT (SUM) dan CARRY OUT (CARRY).

Rabu, 10 Oktober 2012

Rangkaian Counter

RANGKAIAN COUNTER
Counter adalah sebuah rangkaian sekuensial yang mengeluarkan urutan state-state tertentu,yang merupakan aplikasi dari pulsa-pulsa inputnya. Pulsa input dapat berupa pulsa clock atau pulsa yang dibangkitkan oleh sumber eksternal dan muncul pada interval waktu tertentu. Counter banyak digunakan pada peralatan yang berhubungan dengan teknologi digital, biasanya untuk menghitung jumlah kemunculan sebuah kejadian/event atau untuk menghitung pembangkit waktu. Counter yang mengeluarkan urutan biner dinamakan Biner Counter. Sebuah n-bit binary counter terdiri dari n buah flip-flop, dapat menghitung dari 0 sampai 2n -1.
Counter merupakan rangkaian logika pengurut, karena counter membutuhkan karakteristik memori, dan pewaktu memegang peranan yang penting. Counter digital mempunyai karakteristik penting yaitu sebagai berikut :

1. Jumlah hitungan maksimum (modulus N-counter)
2. Menghitung ke-atas atau ke-bawah (up atau down - counter)
3. Operasi asinkron atau sinkron
4. Bergerak bebas atau berhenti sendiri

Sebagaimana dengan rangkaian sekuensial yang lain, untuk menyusun counter digunakan flip-flop. Counter dapat digunakan untuk menghitung banyaknya clock-pulsa dalam waktu yang tersedia (pengukuran frekuensi), Counter dapat juga digunakan untuk membagi frekuensi dan menyimpan data.

Counter secara umum diklasifikasikan atas counter asyncron dan counter syncronous.
a. Counter asyncron
Counter Asyncronous disebut juga Ripple Through Counter atau Counter Serial(Serial Counter), karena output masing-masing flip-flop yang digunakan akan bergulingan (berubah kondis i dar i “0” ke “1”) dan sebaliknya secara berurutan atau langkah demi langkah, hal ini disebabkan karena hanya flip-flop yang paling ujung saja yang dikendalikan oleh sinyal clock, sedangkan sinyal Clock untuk flip-flop lainnya diambilkan dari masing-masing flip-flop sebelumnya.

b. Counter Syncronous
Counter syncronous disebut sebagai Counter parallel, output flip-flop yang digunakan bergulingan  secara serempak. Hal ini disebabkan karena masing-masing flip-flop tersebut  dikendalikan secara serempak oleh sinyal Clock.

Senin, 08 Oktober 2012

Rangkaian Sekuensial

RANGKAIAN SEKUENSIAL
Rangkaian logika sekuensial adalah rangkaian logika yang kondisi keluarannya dipengaruhi oleh masukan dan keadaan keluaran sebelumnya atau dapat dikatakan rangkaian yang bekerja berdasarkan urutan waktu. Ciri rangkaian logika sekuensial yang utama adalah adanya jalur umpan balik (feedback) di dalam rangkaiannya.
 
Flipflop adalah rangkaian utama dalam logika sequensial. Counter, Register,Memory, serta rangkaian sequensial lainnya disusun dengan menggunakan flipflop sebagai komponen utama. Flipflop adalah rangkaian yang mempunyai fungsi pengingat (memory). Artinya rangkaian ini mampu melakukan penyimpanan data sesuai dengan kombinasi masukan yang diberikan kepadanya. Ada beberapa macam flipflop yang akan dibahas yaitu RS flipflop, JK flipflop, D flipflop, dan T flipflop. Ciri utama dari flipflop adalah keluaran Q dan Q adalah selalu berlawanan / stabil (jika Q = 0 maka Q = 1, Jika Q = 1 maka Q =0). Karena kondisi dua keadaan stabil ini rangkaian flipflop dinamakan juga dengan rangkaian bistabil.
1. RS Flip Flop
Flipflop ini terdiri dari dua masukan, yaitu S (set) dan R (reset). Serta dua keluarannya yaitu Q dan Q . Kondisi Set adalah kondisi ketika Q berlogika 1.
Sedangkan kondisi Reset adalah kondisi ketika Q berlogika 0.

2. JK Flip Flop
Flipflop JK merupakan penyempurnaan dari flipflop RS terutama untuk mengatasi kondisi terlarang seperti yang telah dijelaskan diatas. Pada kondisi masukan J = 1 dan K = 1 akan membuat kondisi keluaran berlawanan dengan kondisi keluaran sebelumnya. Sementara untuk keluaran berdasarkan kondisikondisi masukan yang lain semua sama dengan Flipflop RS.

3. D Flip Flop
Flipflop D merupakan Flipflop RS yang memaksa untuk memiliki satu masukan dengan R selalu berlawanan dengan S, sehingga kondisi masukan SR sama tidak akan pernah terjadi.

4. T Flip Flop
Flipflop T atau flipflop toggle adalah flipflop JK yang kedua masukannya (J dan K) digabungkan menjadi satu sehingga hanya ada satu jalan masuk. Karakteristik dari flipflop ini adalah kondisi keluaran akan selalu toggle atau berlawanan dengan kondisi sebelumnya apabila diberikan masukan logika 1. Sementara itu kondisi keluaran akan tetap atau sama dengan kondisi keluaran sebelumnya bila diberi masukan logika 0.
 
Sementara untuk keluaran berdasarkan kondisi-kondisi masukan yang lain semua sama dengan flip-flop R-S. Bentuk dasar dari logika sekuensial adalah rangkaian flip flop yang di rangkai dari gerbang logika seperti NAND dan AND. Flip Flop RS dapat dibentuk dari kombinasi dua gerbang NAND atau kombinasi dua gerbang NOR,

Minggu, 07 Oktober 2012

Rangkaian Kombinasional

Rangkaian kombinasional terdiri dari gerbang logika yang memiliki output yang selalu tergantung pada kombinasi input yang ada. Rangkaian kombinasional melakukan operasi yang dapat ditentukan secara logika dengan memakai sebuah fungsi boolean.

Ada beberapa Rangkaian logika kombinasional yang akan dibahas adalah Enkoder, Dekoder, Multiplexer, dan Demultiplexer.
1.    Enkoder
Enkoder adalah rangkaian logika kombinasional yang berfungsi untuk mengubah atau mengkodekan suatu sinyal masukan diskrit menjadi keluaran kode biner.
Enkoder disusun dari gerbanggerbang logika yang menghasilkan keluaran biner sebagai hasil tanggapan adanya dua atau lebih variabel masukan. Hasil keluarannya dinyatakan dengan aljabar boole, tergantung dari kombinasi - kombinasi gerbang yang digunakan.
Sebuah Enkoder harus memenuhi syarat perancangan m < 2 n . Variabel m adalah kombinasi masukan dan n adalah jumlah bit keluaran sebuah enkoder. Satu kombinasi masukan hanya dapat mewakili satu kombinasi keluaran.

2.    Dekoder
Rangkaian Dekoder mempunyai sifat yang berkebalikan dengan Enkoder yaitu merubah kode biner menjadi sinyal diskrit. Sebuah dekoder harus memenuhi syarat perancangan m < 2 n . Variabel m adalah kombinasi keluaran dan n adalah jumlah bit masukan. Satu kombinasi masukan hanya dapat mewakili satu kombinasi keluaran.

3.    Rangkaian logika kombinasional Multiplexer
Rangkaian logika kombinasional Multiplexer atau disingkat MUX adalah alat atau komponen elektronika yang bisa memilih input (masukan) yang akan diteruskan ke bagian output (keluaran). Pemilihan input mana yang dipilih akan ditentukan oleh signal yang ada di bagian kontrol (kendali) Select.

4.    Rangkaian Logika kombinasional Demultiplekser
Rangkaian logika kombinasional Demultiplekser adalah Komponen yang berfungsi kebalikan dari MUX. Pada DEMUX, jumlah masukannya hanya satu, tetapi bagian keluarannya banyak. Signal pada bagian input ini akan disalurkan ke bagian output (channel) yang mana tergantung dari kendali pada bagian SELECTnya.

Jumat, 05 Oktober 2012

Pengertian Elektronika Digital

Elektronika digital adalah sistem elektronik yang menggunakan signal digital. Signal digital didasarkan pada signal yang bersifat terputus-putus. Biasanya dilambangkan dengan notasi  aljabar 1 dan 0. Notasi 1 melambangkan terjadinya hubungan dan notasi 0 melambangkan tidak terjadinya hubungan.

Contoh yang paling gampang untuk memahami pengertian ini adalah saklar lampu. Ketika kalian tekan ON berarti terjadi hubungan sehingga dinotasikan 1. Ketika kalian tekan OFF maka akan berlaku sebaliknya.

Elektronik digital merupakan aplikasi dari aljabar boolean dan digunakan pada berbagai bidang seperti komputer, telpon  selular dan berbagai perangkat lain. Hal ini karena elektronik digital mempunyai beberapa keuntungan,  antara lain: sistem digital mempunyai antar muka yang mudah dikendalikan dengan komputer dan perangkat lunak, penyimpanan informasi jauh lebih mudah dilakukan dalam sistem digital dibandingkan dengan analog. Namun sistem digital juga memiliki beberapa kelemahan, yaitu: pada beberapa kasus sistem digital membutuhkan lebih banyak energi, lebih mahal dan rapuh.